Primes back to front

In base twelve, and in base eight, " 15 " is a prime, and so is its 'reversal' " 51 ".
There are more prime pairs such as 15 and 51 (base eight or twelve) in an oddnumber base than in an even-number base. In an even-number base any prime beginning with an even digit, (such as 23 in base eight), cannot be a prime when it is reversed.

Here (for example) is a list of some primes in base eleven and their prime reversals:
(Z stands for ten in base eleven)

Table A

12	21	16	61	18	81	27	72
29	92	34	43	$3 Z$	73	49	94
56	65	67	76	89	98	$9 Z$	79

Reversed primes - with "Two-Way" Notation
In base eight, " 15 " is a prime, and so is its reversal " 51 ". If we express these in two-way notation, base eight, however, these are written $2 \overline{3}$ and $1 \overline{3} 1$ and are not reversals. In base ten we have the pair of primes 79 and 97; in two-way notation these become $1 \overline{2} \overline{1}$ and $10 \overline{3}$.

Table B shows the primes from table A in two-way notation:
Table B

12	21	$2 \overline{5}$	$1 \overline{5} 1$	$2 \overline{3}$	$1 \overline{3} 1$	$3 \overline{4}$	$1 \overline{4} 2$
$3 \overline{2}$	$1 \overline{2} 2$	34	43	$4 \overline{1}$	$1 \overline{1} 3$	$5 \overline{2}$	$1 \overline{2} 4$
$1 \overline{5} \overline{5}$	$1 \overline{5} 5$	$1 \overline{4} \overline{4}$	$1 \overline{3} \overline{5}$	$1 \overline{2} \overline{2}$	$1 \overline{1} \overline{3}$	$1 \overline{1} \overline{1}$	$10 \overline{2}$

Which begs the question - are there primes (in two-way notation) which when reversed give us other primes?
Here's one example (apart from the obvious, palindromic, $1 \overline{3} 1$):
$1 \overline{1} 3$ is a prime in base eleven, and so is its reversal, $3 \overline{1} 1$.
Notes:
The Dozenal Society of Great Britain uses symbols suggested by Sir Isaac Pitman for ten and eleven in bases greater than ten. These are τ for ten and ε for eleven.

Two-Way notation, created by J.Halcro Johnston, uses negative digits, such as $\overline{2}$, with positional notation. In base ten, for example, $1 \overline{2}$ stands for "ten less two units" i.e. 8. See other articles on the DSGB site; http://www.dozenalsociety.org.uk

