Find the next term

by Shaun Ferguson
"Find the next number in the sequence ..." is a favourite problem set by newspaper "Puzzle Corners" and numerically-minded Quiz Shows. This activity ranges from nice simple patterns such as $2,4,6,8 \ldots$ to quite complicated structures. Implied in the request to find the next number is the idea that there is a next number and that it is unique. Can we assume so much? Is there a unique answer - or are there sequences that admit of more than one solution, that are in fact 'ambiguous' ? If so, now many - or how few - more terms of the sequence do we need to make it unambiguous?

Given the sequence $2,4,6,8 \ldots$ most people would assume that the next number is ten - it is the most obvious answer. I have written "ten" on purpose - after all, we could use a base other than ten, in which the number ten itself would appear in a different guise - in base nine, for example, ten is written " 11 " (one nine and one unit) and in base twelve it would need a single digit because in base twelve, twelve itself is written " 10 ". We'll only use one base here.

All the number work that follows is in base twelve - if you've met the logo above before you'll know that it's one I use on work for the DSGB (Dozenal Society of Great Britain).

In base twelve " 10 " means one dozen and no units, so we need two new symbols - one for "ten" and one for "eleven". I use an inverted 2 for ten and an inverted 3 for eleven, which gives us the sequence:

0123456789 乙 \& $101112131415161718191 乙 1 \in 20$...

To return to our number patterns. How few terms do we need to fix the pattern? Three? As in the sequence $1,2,3,$. or $2,4,6, .$. But even the innocent-looking $1,2,3 \ldots$ is wide open - has the 3 been produced by adding a unit? Or is it, as in the Fibonacci sequence, the sum of the first two terms? The pattern could go on $1,2,3,4,5,6, \ldots$ or (Fibonacci) $1,2,3,5,8,11,19 \ldots$ (No, 11 is not a mistake; it's still what we usually call thirteen - but here's it is "a dozen and one", 11). So three terms, for the sequence $1,2,3$.. are not enough - maybe four would fix the pattern.

What sparked this article off was a remark that the sequence $2,3,5$.. could be taken as the start of the set of prime numbers (2 being the only even one). Admittedly they could be the primes - in which case
a) $2357 \varepsilon 111517$ is the sequence intended; or since $2 \times 3-1=5$ it might be
b) 2351259 ($12=3 \times 5-1$; $59=5 \times 12-1$ etc $)$; or with the nth term being $2^{\text {n-1 }}+1$ it might be
c) 2359 15; or
there could be a pattern of increasing addends:
d) $23581015(2+\mathbf{1}=3 ; 3+\mathbf{2}=5 ; 5+\mathbf{3}=8 ; 8+\mathbf{4}=10 \mathrm{etc})$
and if you note that the first four terms of pattern (d) are the same as those of the Fibonacci sequence
e) 23581119 ...
maybe we need at least 5 terms...

Well? Can you write down a sequence of numbers such that there is only one (unambiguous) value for the term after the last one written down? Just the numbers, not a rule stated in algebraic or settheoretic terms. No, you can't even have $2,4,6,8 \ldots$ attractive though the thought may be. The next number might be ten, but it could equally well be ε or $10 \ldots$... Another valid sequence is
(a) 246810 1Z.. and another (b) 2468 ع 15...

Can you construct the rule I've used here?
And here are two more - what's the next term for these?
c) $1,2,4,8,14,26,44 \ldots$
d) $1,2,4,8,14,28,5 Z \ldots$

Hints follow on the next page.

More bits and pieces about dozenals can be found at http://www.dozenalsociety.org.uk

The $2,4,6,8, \ldots$ patterns are created by:
a) $\mathrm{f}(\mathrm{n})=2 \mathrm{n}+(\mathrm{n}-4)(\mathrm{n}-3)(\mathrm{n}-2)(\mathrm{n}-1) / 10$ and
b) $\mathrm{f}(\mathrm{n})=2 \mathrm{n}+(\mathrm{n}-4)(\mathrm{n}-3)(\mathrm{n}-2)(\mathrm{n}-1) / 20$
and similar ideas created the other two patterns (c) and (d). [I think (c) is connected with the number of segments in a circle cut by n intersecting lines.]

And to finish, in (d), $5 \times 12-1=59$ is true in any base b, where $b>9$.
(Adapted from my article in the Dozenal Bulletin of the Dozenal Society of America)

